• Spatiotemporal variations in ecosystem services and their trade-offs and synergies against the background of the gully control and land consolidation project on the Loess Plateau, China

    分类: 生物学 >> 生态学 提交时间: 2024-01-12 合作期刊: 《干旱区科学》

    摘要: Studying the spatiotemporal variations in ecosystem services and their interrelationships on the Loess Plateau against the background of the gully control and land consolidation (GCLC) project has significant implications for ecological protection and quality development of the Yellow River Basin. Therefore, in this study, we took Yan'an City, Shaanxi Province of China, as the study area, selected four typical ecosystem services, including soil conservation service, water yield service, carbon storage service, and habitat quality service, and quantitatively evaluated the spatiotemporal variation characteristics and trade-offs and synergies of ecosystem services from 2010 to 2018 using the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model. We also analysed the relationship between the GCLC project and regional ecosystem service changes in various regions (including 1 city, 2 districts, and 10 counties) of Yan'an City and proposed a coordinated development strategy between the GCLC project and the ecological environment. The results showed that, from 2010 to 2018, soil conservation service decreased by 7.76%, while the other three ecosystem services changed relatively little, with water yield service increasing by 0.56% and carbon storage service and habitat quality service decreasing by 0.16% and 0.14%, respectively. The ecological environment of Yan'an City developed in a balanced way between 2010 and 2018, and the four ecosystem services showed synergistic relationships, among which the synergistic relationships between soil conservation service and water yield service and between carbon storage service and habitat quality service were significant. The GCLC project had a negative impact on the ecosystem services of Yan'an City, and the impact on carbon storage service was more significant. This study provides a theoretical basis for the scientific evaluation of the ecological benefits of the GCLC project and the realization of a win-win situation between food security and ecological security.

  • The Role of the Peptidyl-Prolyl cis/trans Isomerase Pin1 in The Occurrence and Development of Alzheimer's Disease

    分类: 生物学 >> 生物物理学 >> 生物物理、生物化学与分子生物学 提交时间: 2016-05-12

    摘要: Pin1 is the only known cis-trans isomerase that recognizes pThr/pSer-Pro in proteins, relevant to the pathogenesis of Alzheimer' s disease (AD). Pin1 regulates the structures and functions of some molecules that are related to AD, inhibits the main AD pathological characteristics such as neurofibrillary tangles (NFTs), senile plaques (SPs), and cerebral amyloid angiopathy (CAA), promotes the differentiation of neural progenitor cells (NPCs) to neurons, and to some extent prevents the occurrence and development of AD. Meanwhile, Pin1 dysfunction in vivo may be involved in the pathogenesis of AD. Nevertheless, whether Pin1 could be a therapeutic target for the prevention and treatment of AD still needs to be verified clinically. Considering of the poor efficacy of AD medicines that target each single molecule in brain, the "combined multiple-target medicine" focusing on Pin1 and other related molecules may be a therapeutic strategy for AD in the future.

  • Monitoring rock desert formation caused by two different origins (ice-snow melting and drying) in the Qinghai-Tibet Plateau of China by considering topographic and meteorological elements

    分类: 地球科学 >> 地理学 提交时间: 2022-10-13 合作期刊: 《干旱区科学》

    摘要:Monitoring rock desert formation caused by two different origins (ice-snow melting and drying) through remote sensing is crucial to our understanding of the interaction between the underlying surface of different rock desert and land-atmosphere types, as well as the relationship between bare land and soil erosion. A number of achievements have been made in remote sensing monitoring of desert areas, but there is a lack of accurate classification and remote sensing identification of rock desert types based on formation mechanism. In this study, the north and south sides of the eastern Kunlun Mountains in the northern part of the Qinghai-Tibet Plateau of China were taken as the study areas. Landsat operational landscape imager, digital elevation model, and precipitation and temperature grid data were used as data sources. By identifying the bare areas based on the normalized difference vegetation index (NDVI), we used the multi-element fusion method of contours, isotherms, and isohyets to identify the rock desert types in the ice-snow melting and dry areas. The results showed that: (1) the rock desert areas identified by remote sensing based on topographic and meteorological elements were highly accurate, with an overall accuracy of 88.45% and kappa coefficient of 0.77. The multi-element fusion method of contours, isotherms, and isohyets could effectively identify the rock desert types in the ice-snow melting and dry areas; (2) the optimal segmentation range of the ice-snow melting and dry areas was 3600 m contour, –2°C–2°C isotherms, and 100–130 mm isohyets. The areas with elevation less than 3600 m, annual average temperature higher than 2°C, and average annual precipitation less than 100 mm were rock desert in the dry areas. The range of –2°C–2°C isotherms and 100–130 mm isohyets was the transition area between the ice-snow melting and dry areas. The areas with elevation higher than 3600 m, annual average temperature less than –2°C, and average annual precipitation higher than 130 mm were rock desert in the ice-snow melting areas; and (3) the identification accuracy of the bare areas based on the NDVI method was better, specifically, the identification accuracy of plain bare areas was generally better than that of mountain bare areas. The remote sensing identification method considers not only the topographic factors that have great influence on the spatial distribution of the two types of rock desert areas, but also the meteorological factors, which can provide a scientific reference for the effective identification of the two types of rock desert areas.